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ABSTRACT

This paper reports on analytical and experimental studies of the rate of flow of gas into a timber floored
test hut at the Building Research Establishment. The analytical results give insight into the nature of the flow
through bare soil and will prove useful in verifying computational models. The experimental work took place at
the BRE radon pit. The flow rates through the sand produced by different pressures in the under floor space were
measured. The analytical solution gives good agreement with the measured flow rate and will in future be compared
with the measured pressure field. The results will be useful in understanding the effectiveness of remedial measures
for this type of floor structure.

INTRODUCTION

In this paper a comparison is made between analytical methods of predicting the entry of gas into a timber
floored building and a measurement of the same flow. The analytical solutions enable the flow to be predicted from
the soil permeability, the driving pressure and a constant factor which can fairly easily be calculated from the
geometry of the building. A detailed calculation of the pressure field is not needed, but the methods used enable
it to be found if desired. The analytical solution gives good agreement with the measured flow rate and will in
future be compared with the measured pressure field. The results will be useful in understanding the effectiveness
of remedial measures for this type of floor structure.

Timber is the dominant flooring material in the UK, with over 90% of homes having some part of the floor
as suspended timber. This consists of a timber floor suspended on joists above a small air gap, of 10 to 50 cm
depth, which should be veatilated, but isn’t in all cases. In some houses there is an oversite layer of concrete, but
this is often of poor quality.

As a result tiereis an easy entry path for radon through the soil, into the void and through the many cracks
in the timber ﬂoors‘nwme(hodsusedmtheUKtoremedute theeehousesmducussedmanotherpapetat this
conference' but mainty-ivolve improving the ventilation of the void.

The aim is to find exact solutions to as many problems as possible. An analytic solution is often more
versatile than a numerical one, since the answer will be in terms of parameters which are more easily varied than
those in a numerical solution. They also indicate which problems need to be solved numerically and can help with
the validation of numerical models. Usually only a fairly simple geometry can be solved exactly, and any problem
without an exact solution will need to be solved numerically. But a simpler approximation to the real problem gives
an idea of the type of reqult to expect.



- ' ANALYTICAL SOLUTIONS -

-Laplace’s m:: is used to model the pressure in soil wherever the Darcy Law for gas flow is valid.
Recent work at Laweeace Berkeley Laboratory has shown that soil gas flow is not always lincar®. However this
generally happens when-here is a sub-slab ventilation system being used (or radon sump in the UK), and gas ﬂow
velocities become high, of order 0.1 ms” or more. The problems considered here have velocities of order 10 ms™,
o the Darcy Law remains valid.

The key equations used are Darcy’s Law:
Q = k/g. A . dP/dx : (1)

where Q is the flow rate (m’h* )
k is the permeability of the soil (o)
p is the viscosity of the fluid flowing (Pa.s)
A is the area of flow (m? )
P is the excess pressure of the fluid compared to ambient (Pa)
x is the length over which flow occurs (m)

and combining this with the continuity equation gives Laplace’s Equation®:
VP = 0 )

This equation describes the pressure field within a region of soil. If it can be solved, then the flow rate can be
found from Darcy’s Law. From the flow rate a prediction of a likely radon entry rate can be made, by assuming
the soil radon conceatration. The worst case assumption is that the deep soil radon concentration applies at all
levels.

In the following examples problems of increasing complexity are solved using different techniques. It is
not possible to do more than indicate the method of solution here; contact the author for more details.

The first problem represents a simple two dimensjonal building, with a fixed pressure inside and out, and
a linear change in pressure across the walls. The parameters n and m are used to allow a general solution to be
found. It is defined by the following pressure distribution on y=0, also shown as figure 1.

|x] > n, P(x,0) = 0
m< |x|] <n P(x,0) = le (3)
|x] < m P(x,0) =
o A Pressare
0 | I\
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Figure 1: Pressure Distribution On y=0 For Solution 1



The value of m represents the distance from the centre of the house to the inside edge of the wall, while
n is the length to the outer edge of the wall. Using a Laplace transform method the solution is found to be

(o {2 [t ) e

- ((w) . (m{!;%-‘)) - (% . Infy? + (m)’)]

Each of the four braced terms are to be repeated with plus and then minus, giving cight terms in all. This result
for the pressure field is plotted in figure 2, with the factors m and n equal to 2 and 3 respectively, and the pressures
normalised. This shows that the boundary conditions have been satisfied correctly, with a linear pressure change
between m and n on the x axis.
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Figure 2: Pressure contours for solution 1

Flow Rate

By differentiating (4) to give dP/dx, and then integrating this in Darcy’s Law (1) with respect to x from
-m to +m, gives: :

2P, .
Q= 9 | [(a+m)in(n+m) - (n-m)in(a-m) - 2min(2m)] (5

(n-m)xp

Here the indoor pressure_is set to P, and the factor (n-m) is needed to account for this. Note that the flow is

predicted to be linearly felated to the indoor pressure, the permeability of the soil and a factor relating to the shape
of the building. ——— A '

This flow result is the same as that produced by Landman and Delsante* but via an alternative method
involving Fourier series, although they gave their result in terms of different parameters. Note that in the limit m
tends to n, the first and third terms in the square bracket cancel and the second term simplifies to In(n-m). This
predicts an infinite flow rate, as can be found for the simpler *Top Hat' problem.



2; Co

In this problemr there are thick walls which do not extend into the ground, through which no flow is
assumed to occur. -Fhe-pressure is assumed fixed at P, inside the house, and at 0 outside. The conditions on y=0
are shown on figuréZ,1 below. Any similar house would give the same result scaled up or down, so the inside of
the wall is set to be at 1, andtheoumdeofthewallatm

Figure 3: The pressure ﬁeld on’y-—:o Jor solution 2

The method used to solve this problem is not straightforward, and is taken from®. It uses the fact that any
differentiable function of the complex variable z = x + iy is a solution to Laplace’s equation, and the relationship
between the real and imaginary parts of a function of a complex variable. In this paper i is the square root of -1.

The solution to the pressure field is described by a function V, while the gradient of the pressure is
described by another function U. These two are combined to give the complex function W = U + iV, and the
solution to W can be found. From it U and V are then obtained. The boundary conditions for the W problem are
shown below. One of U and V must be defined everywhere along y=0. -

V-OI Us-B V=b U=B V=0

om -1 0 1 m

x axis

Figure 4: Boundary conditions on the complex function W

B is a constant to be determined. Finding B is a major part in finding the solution to the problem. B is also
important in finding the flow rato into the house. Afier solving for W the complex part of W is taken, which will
give the pressure field V(x,y).

Using® the solution is written as

._-;_.-
'_—..

@+m)z-1)\2 g’g-mgyl! 2 M)
" (z*l)(z-m)] ((:-1)(».)] - **C ~©

This must be expanded term by term to include the form of h(t), and the sign and nature of the root terms. h(t) is
Bfor-m<x<-l,iPofor-1 < x < land +Bforl < x < m.



By applying the boundary conditions we can find the constants B and C. They come out to be:

Table 1; Equations for B and C and values of B for varying paraméter m

Both of the integrals in the expression for B are elliptical integrals, which can be found from tables, e.g.’.

Numerical Integration

The expression for W is not integrable exactly because of the elliptical integrals in it. Hence to obtain the
solution a numerical integration using Simpson’s Rule was necessary to produce figure 5. This gives the expected
form of result, and meets the boundary conditions. In this case the parameter m had value 2, which is an unrealistic
situation, but shows the boundary conditions better than an example with smaller m.

In figure 5 the whole region is shown as a pressure contour plot. The flow of gas would be perpendicular -
to the pressure contours at all points, with the rate proportional to the pressure gradient or separation of the lines.
The non linear pressure drop between x=1 and x=2 is the main difference between this result and solution 1 where
the pressure drop across the wall was forced to be linear.
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Figure 5: Pressure field for solution 2



Flow Produced By The Pressure Distribution
A key resultiiCthe flow rate into a house produced by a given pressure distribution. This is given,

assuming linear 1&:%‘)- flow (1), by the integral of the pressure gradient between the two walls. That is:

kE &P
m = e |, e— - & "'(8
!: T )
But this simplifies to give L
Flow = -2B . K w(®

The values of B for given values of P, and m are given in table 1 above. The flow rates predicted by the different
results are discussed later.

yixed nagry r 4 ith Deptl

Conformal Mapping is a process whereby a solution to a problem found in one co-ordinate set is transferred
to another co-ordinate set. This then gives a solution to 2 problem which may not have been soluble in another way,
or may be simpler than a different direct method.

Real walls have foundations in the soil, which cannot be ignored in gas flow. As a first step consider a
thin wall extending down into the ground as shown in figure 6 below. Note that d and c are positive, real numbers.
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Figure 6: Diagram for the mapped pressure field problem, the Z(x,y) plane
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The task is to find the transformation that maps points from figure 6 onto figure 3 of solution 2, so that
the pressure field fot”gesblem 3 can be found without further solving of the basic equations. Unfortunately the
transformation is net¥asy to find. The layout we are trying to map onto is shown in figure 7. Here the points 1
to 8 from figure 6 lre.thowntmnsformedtotheW(X Y)planeaspomts 1’ to 8°,

r z y ¢ r ¢ T ¢

U=B

Ve

Figure 7: Diagram of the plane mapped onto, the W(X,Y) plane.

The method used is called the Schwarz-Christoffel transformation’. It gives the transformation which maps any
closed polygon onto a plane, if the positions of the corners and angles at each corner are known. It is:

R A
Z=fW)=a [T H-0)"" aw+ b ~(10)
. '. ’.]

where
a, b and W, are constants to be determined
a; are the angles at the points in the Z plane
¢; are the positions of the corresponding points in the W plane
n is the number of points on the x axis, here 7 since points 1 and 8 are the same

In this case the angles o, are %/2, 2x, %/2, %/2, 2%, %/2 respectively for the points 2 to 7. The ¢; are the points
on the Y axis -0, -1/g, -\, <1, 1, A, 1/g, o

Hence the transformation needed is:

»
z- 2L f T w1 AW Qg . aw 11)
Viw2-1) o Vig*W-1).(W2-1)]

This expression conhms.eommonly occurring elliptical integrals which have to calculatea numerically for nearly
" all values of g and W™, "The values are found in tables, for example®, or by numerical integration.



Finding the parameters in the transformation .
There are as%¢three unknowns to find; a, A and g. 'Ihesecanbefoundfmmthepomtswhmthemult

of the trmsformanmown, (d,0), (d,<) and (d,0) again. From these it is posslble to find the values of the
parameters g and k-ﬁom.c and d. Some values are given below.

1/g A c d 2

3 1.991 1 1.8 0.322

2 1.499 1 2.87 0.986

1.5 1.2499 1 4.926 2.654
1.2 1.1 1 10.969 8.328

Table 2: Parameters in solution 3

Hence A is very close to halfway between 1 and 1/g, but not exactly equal to it. Expressions can be found for A
when 1/g is close to 1 and when it becomes large, but these are not included here.

The result from the numerical integration of the transformation (2.5) is Figure 8, where 1/g was 2. Each
point calculated from solution 2 earlier was transformed to the corresponding point for this problem, and its pressure
value plotted against the new co-ordinates. Figure 8 shows a good result, of the form we would have expected.
The curved line at the bottom shows the limit to the transformed domain; there is no reason why the plot could not
be extended further. The "untidy’ region below x = 2.87 is due to the plotting package having difficulty with the
discontinuity in the data.
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Figure 8: Pressure field contours for solution 3



Flow rate

Integrating Paray’s Law (1) as before gives the flow: rate to be exactly the same as for the untransformed
problem. Heace thrﬂwuns given by:

_-—_-

flow = k/p 3B. P, «.(12)

where B was found earlier. It is a constant for any given problem in the 'flat’, untransformed co-ordinates. This
flow is the same as for the corresponding problem and means a given value of g in the 'flat’ problem corresponds
to a specific ratio of ¢ to d in the second problem.

_ The same method has been taken a stage further to allow a thick wall to be transformed in the same way.
To date the pressure ficld has not been calculated, but the flow rates have been found and are used later to compare
with the experimental results. This is achieved by using the results for the points where the results of the
transformation are known to find values for the dimensions of a sample wall which correspond to the same flow
rate as a known solution for the ’flat’ solution 2. The details will be published later.

Experimental results- The BRE Radon Pit

The radon pit is an unusual piece of experimental equipment. It consists of sand about 6m by 10m and
4m deep. The sand contains high levels of radium, which resuits in high radon levels in soil gas in the sand. On
top of the sand two structures have been built. These are essentially identical, so that changes to one structure can
be monitored against the other as a control. BRE is using the facility to mvuugate the methods to remediate houses
with tunber floors, but this paper does not report on these expcnments

In this test the flow through the soil due to an applied pressure below the floor was measured, since this
is the most useful prediction from the theory. The soil leakage can be measured by balancing the pressure in the
*house’, P, with that in the under floor area, P,. The idea is shown in the diagram below.

FowQm P Main Space pressure P
FowQz ¥ Underfloor pressure Fa » Fowe
Sand surface .
L ow L]
v
v A 4

‘. :

Figure 9: The experimental arrangement
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The pressure across the floor is balanced using two fans. One fan blows air into the main space, at a rate
Q.- A second fan blowginto the under floor space, at a rate Q,. All the visible holes in the wall are sealed. The
flow Q,, whea the—pmsures are equal across the floor is the 'leakage’ of the soil Q,and the subfloor walls Q,,
combined. The walis hére were painted on the inside with a bituminous paint, and the air bricks were carefully
sealed. As a result the majority of the flow was probably going through the soil and not through the walls.

Hut Fan Hut-Outside Pressure | Hut-Underfloor Underfloor Fan Flow
Flow m’h? Pa Pressure Pa m’h?
" 40 -90 < 0.05 27
" 36 -70 < 0.02 ‘ 21
28.5 -55 < 0.02 20
-28 < 0.02 12

Table 3: Results from the balanced pressure test

These data indicate that the upper part of the house is leakier than the lower part. The data for the underfloor fan
fit to the expression

Q = 1.4 (AP ! (13)
and the flow at SO Pa is predicted to be: |
Qy = 18.9 m’h’.
For the main space fan the 50 Pa flow was:
Qe = 26.3 m’h?

Hence the overall hut leakage was around 45 m’h or 2 ach (air changes per hour) at 50 Pa. This is not
characteristic of UK housing as it much lower than the average of around 15 ach. Another test showed that the
floor of the hut had extremely small leakage.

During the test some pressures in the sand were also measured. However more measurements are planned
for a later date to improve the spread of data, and to enable a comparison with the predictions of the theory for the
pressure field.

Laboratory measurement of permeability
.In the lnbﬁ'nmlya sample of the sand was used to measure the permeabmty of the radon pit sand, by
blowing air througl_l;@mple, and measuring the flow rate and pressure drop producing it. Although this test
could be improved in accuracy, and the varying effects of compaction and water content investigated, the
permeability was found to be 1x10° m?. This result was confirmed by an earlier similar test performed by the
. National Radiological Protection Board (NRPB).



COMPMON OF ANALYTICAL AND EXPERIMENTAL RESULTS

w‘_

The raden” pnf hits are sitting on a ring beam foundation which has an outside dimension of 3.3 m,
thickness of 0.58 m and depth 0.4 m. Using the conformal mapping technique of solution 3 this gives a flow
equivalent to that for a wall with no depth but of thickness 2.48 times the half width of the living space.This means
the parameter m of figure 3 is 2.48, which gives a value of B of 0.6 from equation (7).

Hence using this data in equation (9), with the internal pressure P, = 50 Pa, and the calculated B = 0.6;
Flow = 3.28x10°.k (m’s” per metre of wall) ...(14)

Up to this point the flow calculation is fairly precise, but the effect on the flow rate of the corners of the
building are hard to include accurately, although these will increase the flow rate above that predicted here. There
are 2.14 metres of internal wall in each direction, so neglecting the corner effects the effective length of wall is 4.28
in equation (14):

Flow 14x10° . k  (m%™)
5x10', k (m'h™" ..(15)

Since the measured flow rate was 19 m’h! this suggests the permeability of the sand is around 4 x 10°° m?, This
is typical for sands® and is closeto that measured for the sand in the laboratory, 1 x 107'° m?. The cause of the
difference is likely to be one of the following:

1) Neglecting the corner effects in calculating the theoretical flow rate into the hut
2) The leakiness of the subfloor walls of the hut
3) Leaks from the pipes used to measure thesandpermeabxhtymthe
laboratory
4) Uncertainty in the compaction and water content of the sand in the
laboratory

Both 1 and 2 would cause the calculated permeability to be reduced from the 4 x 10'° m? predicted, while
3 would similarly reduce the laboratory measured permeability. Point 4 could affect the permeability in either
direction, and deserves further investigation. The result is clearly very encouraging, and shows good agreement
between the two methods of finding the permeability, well within the considerable experimental errors involved in
the experiments.

CONCLUSIONS

In this paper the results of analytic studies of the flow of gas into the void below a suspended timber floor
have been presented. Thiese give complicated expressions for the pressure fields being produced, but much simpler
forms for the flow ratea.- In each case the flow rate was found to be proportional to the permeability and the
internal pressure asExpected, but also proportional to a geometrical factor which can be found comparatively easily
for any floor geometry.

A method for measuring the flow rate through the soil below a building with no concrete oversite was described,
and the initial results presented. The technique will not be genenlly applicable because of the leakiness of most
buildings, but could be of some use in measuring soil leakages.

The results for the two parts of the work have been compared through the permeability they predict for
the sand at the BRE radon pit. Considering the considerable variability of permeabilities and the difficulty of
measuring them accurately, the two predictions compare well with a direct experimental measurement of
permeability.



In future wetk:the pressure field in the sand will be compared directly with the model predncuons, and the
malytwdmethod&ppﬁdloothergeometnes The analytical results will be used to looknthecffecuveneas of
radon remedial meuu'm for this type of floor construction. :
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